Part Number Hot Search : 
PEB2086 K4N56 M3R63FCJ 20121 19B472MR K4N56 A7805 M3R63FCJ
Product Description
Full Text Search
 

To Download SGD04N60 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  sgp04n60, sgb04n60 SGD04N60, sgu04n60 1 mar-00 fast s-igbt in npt-technology g c e ? 75% lower e off compared to previous generation combined with low conduction losses ? short circuit withstand time ? 10 s ? designed for: - motor controls - inverter ? npt-technology for 600v applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability type v ce i c v ce(sat ) t j package ordering code sgp04n60 600v 4a 2.3v 150 c to-220ab q67041-a4708-a2 sgb04n60 SGD04N60 sgu04n60 to-263ab to-252aa(dpak) to-251aa(ipak) q67041-a4708-a4 q67041-a4708-a5 q67041-a4708-a6 maximum ratings parameter symbol value unit collector-emitter voltage v ce 600 v dc collector current t c = 25 c t c = 100 c i c 9.4 4.9 pulsed collector current, t p limited by t jmax i cpuls 19 turn off safe operating area v ce 600v, t j 150 c - 19 a gate-emitter voltage v ge 20 v avalanche energy, single pulse i c = 4 a, v cc = 50 v, r ge = 25 ? , start at t j = 25 c e as 25 mj short circuit withstand time 1) v ge = 15v, v cc 600v, t j 150 c t sc 10 s power dissipation t c = 25 c p tot 50 w operating junction and storage temperature t j , t stg -55...+150 c 1) allowed number of short circuits: <1000; time between short circuits: >1s.
sgp04n60, sgb04n60 SGD04N60, sgu04n60 2 mar-00 thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r thjc 2.5 thermal resistance, junction ? ambient r thja to-220ab 62 smd version, device on pcb 1) r thja to-263ab 40 k/w electrical characteristic, at t j = 25 c, unless otherwise specified value parameter symbol conditions min. typ. max. unit static characteristic collector-emitter breakdown voltage v (br)ces v ge =0v, i c =500 a 600 - - collector-emitter saturation voltage v ce(sat) v ge = 15v, i c =4a t j =25 c t j =150 c 1.7 - 2.0 2.3 2.4 2.8 gate-emitter threshold voltage v ge(th) i c =200 a, v ce = v ge 345 v zero gate voltage collector current i ces v ce =600v, v ge =0v t j =25 c t j =150 c - - - - 20 500 a gate-emitter leakage current i ges v ce =0v, v ge =20v - - 100 na transconductance g fs v ce =20v, i c =4a 3.1 - s dynamic characteristic input capacitance c iss - 264 317 output capacitance c oss -2935 reverse transfer capacitance c rss v ce =25v, v ge =0v, f =1mhz -1720 pf gate charge q gate v cc =480v, i c =4a v ge =15v -2431nc internal emitter inductance measured 5mm (0.197 in.) from case l e to-220ab - 7 - nh short circuit collector current 2) i c(sc) v ge =15v, t sc 10 s v cc 600v, t j 150 c -40-a 1) device on 50mm*50mm*1.5mm epoxy pcb fr4 with 6cm 2 (one layer, 70 m thick) copper area for collector connection. pcb is vertical without blown air. 2) allowed number of short circuits: <1000; time between short circuits: >1s.
sgp04n60, sgb04n60 SGD04N60, sgu04n60 3 mar-00 switching characteristic, inductive load, at t j =25 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -2226 rise time t r -1518 turn-off delay time t d(off) - 237 284 fall time t f -7084 ns turn-on energy e on - 0.070 0.081 turn-off energy e off - 0.061 0.079 total switching energy e ts t j =25 c, v cc =400v, i c =4a, v ge =0/15v, r g =67 ? , energy losses include ?tail? and diode reverse recovery. - 0.131 0.160 mj switching characteristic, inductive load, at t j =150 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -2226 rise time t r -1619 turn-off delay time t d(off) - 264 317 fall time t f - 104 125 ns turn-on energy e on - 0.115 0.132 turn-off energy e off - 0.111 0.144 total switching energy e ts t j =150 c v cc =400v, i c =4a, v ge =0/15v, r g =67 ? energy losses include ?tail? and diode reverse recovery. - 0.226 0.277 mj
sgp04n60, sgb04n60 SGD04N60, sgu04n60 4 mar-00 i c , collector current 10hz 100hz 1khz 10khz 100khz 0a 10a 20a t c =110c t c =80c i c , collector current 1v 10v 100v 1000v 0 .01a 0.1a 1a 10a dc 1ms 200 s 50 s 15 s t p =2 s f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j 150 c, d = 0.5, v ce = 400v, v ge = 0/+15v, r g = 67 ? ) figure 2. safe operating area ( d = 0, t c = 25 c, t j 150 c) p tot , power dissipation 25c 50c 75c 100c 125c 0w 10w 20w 30w 40w 50w 60w i c , collector current 25c 50c 75c 100c 125c 0a 2a 4a 6a 8a 10a 12a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j 150 c) figure 4. collector current as a function of case temperature ( v ge 15v, t j 150 c) i c i c
sgp04n60, sgb04n60 SGD04N60, sgu04n60 5 mar-00 i c , collector current 0v 1v 2v 3v 4v 5v 0a 3a 6a 9a 12a 15a 15v 13v 11v 9v 7v 5v v ge =20v i c , collector current 0v 1v 2v 3v 4v 5v 0a 3a 6a 9a 12a 15a 15v 13v 11v 9v 7v 5v v ge =20v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristics ( t j = 25 c) figure 6. typical output characteristics ( t j = 150 c) i c , collector current 0v 2v 4v 6v 8v 10v 0a 2a 4a 6a 8a 10a 12a 14a -55c +150c t j =+25c v ce(sat) , collector - emitter saturation voltage -50c 0c 50c 100c 150c 1.0v 1.5v 2.0v 2.5v 3.0v 3.5v 4.0v v ge , gate - emitter voltage t j , junction temperature figure 7. typical transfer characteristics ( v ce = 10v) figure 8. typical collector-emitter saturation voltage as a function of junction temperature ( v ge = 15v) i c = 4a i c = 8a
sgp04n60, sgb04n60 SGD04N60, sgu04n60 6 mar-00 t , switching times 0a 2a 4a 6a 8a 10a 10ns 100ns t r t d(on) t f t d(off) t , switching times 0 ? 50 ? 100 ? 150 ? 200 ? 10ns 100ns t r t d(on) t f t d(off) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, r g = 67 ? ) figure 10. typical switching times as a function of gate resistor (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, i c = 4a) t , switching times 0c 50c 100c 150c 10ns 100ns t r t d(on) t f t d(off) v ge(th) , gate - emitter threshold voltage -50c 0c 50c 100c 150c 2.0v 2.5v 3.0v 3.5v 4.0v 4.5v 5.0v 5.5v typ. min. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce = 400v, v ge = 0/+15v, i c = 4a, r g = 67 ? ) figure 12. gate-emitter threshold voltage as a function of junction temperature ( i c = 0.2ma)
sgp04n60, sgb04n60 SGD04N60, sgu04n60 7 mar-00 e , switching energy losses 0a 2a 4a 6a 8a 10a 0.0mj 0.1mj 0.2mj 0.3mj 0.4mj 0.5mj 0.6mj e on * e off e ts * e , switching energy losses 0 ? 50 ? 100 ? 150 ? 200 ? 0.0mj 0.1mj 0.2mj 0.3mj 0.4mj e ts * e on * e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, r g = 67 ? ) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, i c = 4a) e , switching energy losses 0c 50c 100c 150c 0.0mj 0.1mj 0.2mj 0.3mj e ts * e on * e off z thjc , transient thermal impedance 1s 10s 100s 1ms 10ms 100ms 1 s 10 -3 k/w 10 -2 k/w 10 -1 k/w 10 0 k/w 0.01 0.02 0.05 0.1 0.2 single pulse d =0.5 t j , junction temperature t p , pulse width figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce = 400v, v ge = 0/+15v, i c = 4a, r g = 67 ? ) figure 16. igbt transient thermal impedance as a function of pulse width ( d = t p / t ) *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. c 1 = r 1 r 1 r 2 c 2 = r 2 r ,(k/w) , (s) = 0.815 0.0407 0.698 5.24*10 -3 0.941 4.97*10 -4 0.046 4.31*10 -5
sgp04n60, sgb04n60 SGD04N60, sgu04n60 8 mar-00 v ge , gate - emitter voltage 0nc 10nc 20nc 30nc 0v 5v 10v 15v 20v 25v 480v 120v c , capacitance 0v 10v 20v 30v 10pf 100pf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c = 4a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge = 0v, f = 1mhz) t sc , short circuit withstand time 10v 11v 12v 13v 14v 15v 0 s 5 s 10 s 15 s 20 s 25 i c(sc) , short circuit collector current 10v 12v 14v 16v 18v 20v 0a 10a 20a 30a 40a 50a 60a 70a v ge , gate - emitter voltage v ge , gate - emitter voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce = 600v, start at t j = 25 c) figure 20. typical short circuit collector current as a function of gate-emitter voltage ( v ce 600v, t j = 150 c)
sgp04n60, sgb04n60 SGD04N60, sgu04n60 9 mar-00 dimensions symbol [mm] [inch] min max min max a 9.70 10.30 0.3819 0.4055 b 14.88 15.95 0.5858 0.6280 c 0.65 0.86 0.0256 0.0339 d 3.55 3.89 0.1398 0.1531 e 2.60 3.00 0.1024 0.1181 f 6.00 6.80 0.2362 0.2677 g 13.00 14.00 0.5118 0.5512 h 4.35 4.75 0.1713 0.1870 k 0.38 0.65 0.0150 0.0256 l 0.95 1.32 0.0374 0.0520 m 2.54 typ. 0.1 typ. n 4.30 4.50 0.1693 0.1772 p 1.17 1.40 0.0461 0.0551 t 2.30 2.72 0.0906 0.1071 to-220ab dimensions symbol [mm] [inch] min max min max a 9.80 10.20 0.3858 0.4016 b 0.70 1.30 0.0276 0.0512 c 1.00 1.60 0.0394 0.0630 d 1.03 1.07 0.0406 0.0421 e 2.54 typ. 0.1 typ. f 0.65 0.85 0.0256 0.0335 g 5.08 typ. 0.2 typ. h 4.30 4.50 0.1693 0.1772 k 1.17 1.37 0.0461 0.0539 l 9.05 9.45 0.3563 0.3720 m 2.30 2.50 0.0906 0.0984 n 15 typ. 0.5906 typ. p 0.00 0.20 0.0000 0.0079 q 4.20 5.20 0.1654 0.2047 r 8 max 8 max s 2.40 3.00 0.0945 0.1181 t 0.40 0.60 0.0157 0.0236 u 10.80 0.4252 v 1.15 0.0453 w 6.23 0.2453 x 4.60 0.1811 y 9.40 0.3701 to-263ab (d 2 pak) z 16.15 0.6358
sgp04n60, sgb04n60 SGD04N60, sgu04n60 10 mar-00 p-to251 (i-pak) symbol [mm] [inch] min max min max a 6.47 6.73 0.2547 0.2650 b 5.25 5.41 0.2067 0.2130 c 4.19 4.43 0.1650 0.1744 d 0.63 0.89 0.0248 0.0350 e f 2.18 2.39 0.0858 0.0941 g 0.76 0.86 0.0299 0.0339 h 1.01 1.11 0.0398 0.0437 k 5.97 6.23 0.2350 0.2453 l 9.14 9.65 0.3598 0.3799 m 0.46 0.56 0.0181 0.0220 n 0.98 1.15 0.0386 0.0453 2.29 typ. 0.0902 typ. dimensions p-to252 (d-pak) symbol [mm] inch] minmaxminmax a 6.40 6.73 0.2520 0.2650 b 5.25 5.50 0.2067 0.2165 c (0.65) (1.15) (0.0256) (0.0453) d 0.63 0.89 0.0248 0.0350 e f 2.19 2.39 0.0862 0.0941 g 0.76 0.98 0.0299 0.0386 h 0.90 1.21 0.0354 0.0476 k 5.97 6.23 0.2350 0.2453 l 9.40 10.40 0.3701 0.4094 m 0.46 0.58 0.0181 0.0228 n 0.87 1.15 0.0343 0.0453 p 0.51 - 0.0201 - r 5.00 - 0.1969 - s 4.17 - 0.1642 - t 0.26 1.02 0.0102 0.0402 u---- 2.28 0.2520 dimensions
sgp04n60, sgb04n60 SGD04N60, sgu04n60 11 mar-00 figure a. definition of switching times i rrm 90% i rrm 10% i rrm di /dt f t rr i f i,v t q s q f t s t f v r di /dt rr q=q q rr s f + t=t t rr s f + figure c. definition of diodes switching characteristics p(t) 12 n t(t) j figure d. thermal equivalent circuit figure b. definition of switching losses
sgp04n60, sgb04n60 SGD04N60, sgu04n60 12 mar-00 published by infineon technologies ag , bereich kommunikation st.-martin-strasse 53, d-81541 mnchen ? infineon technologies ag 2000 all rights reserved. attention please! the information herein is given to describe certain components and shall not be considered as warranted characteristics. terms of delivery and rights to technical change reserved. we hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. infineon technologies is an approved cecc manufacturer. information for further information on technology, delivery terms and conditions and prices please contact your nearest infineon technologies office in germany or our infineon technologies representatives worldwide (see address list). warnings due to technical requirements components may contain dangerous substances. for information on the types in question please contact your nearest infineon technologies office. infineon technologies components may only be used in life-support devices or systems with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of SGD04N60

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X